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Pilot 1: Predictive Models for Preclinical Screening
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Aims for Preclinical Screening Pilot

Reliable machine learning based predictive models of drug
response that enable the projection of screening results
from and between cell-lines and PDX models

Uncertainty quantification and optimal experimental design
to assert quantitative limits on predictions and to
recommend experiments that will improve predictions

Improved modeling paradigms that support the graded
introduction of mechanistic models into the machine
learning framework and to rigorously assess the potential
modeling improvements obtained thereof
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Pilot 1: Relevant Datasets

Datasets NCI-60| CLDX | PDX |Sarcoma| SCLC CCLE GDSC GDC

Cell lines / Samples 61 49 x4 | 1000 74 76 504 1074 14,531

Cancer types

Compunds Tested 92,691 | 1000 445 525 24 265 NA

Dose Response Data

DNA Copy Number Variation - Agilent 44K aCGH

DNA Copy Number Variation - NimbleGen 385k aCGH

DNA Copy Number Variation - Affy HU SNP Array 6.0

DN

DNA Methylation - lllumina Methylation 450k

DNA Methylation - lllumina Methylation 27
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SNP - Affy HU SNP Array 6.0

SNP - lllumina 1M
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SNP - Exome Seq

SNP - OncoMap 3.0

SNP - Hybrid capture sequencing

SIS

Gene Expression - Affy HG U133 plus 2

Gene Expression - Affy HG U133 A-B

Gene Expression - Affy HG U95 A-E

Gene Expression - Affy HG U219

Gene Expression - Affy Human Exome Array 1.0

Gene Expression - Agilent mRNA

I LN EN I ENENEN
g
<

RNA-seq - gene expression
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RNA-seq — matched normal vs tumor samples
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miRNA Expression - Agilent miRNA

miRNA Expression - NanoString v v

miRNA-seq — lllumina v

Proteome and kinome v

Histology images v
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NCI-60 Drug Response Prediction Sweeps on
Assays and Machine Learning Algorithms
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Pilot 1 Modeling Efforts are
Constrained by Small Sample Sizes

Effort is aimed at understanding how to address this problem

1) By aggregation of data from multiple sources (NCI-60, CCLE, GDSC, PDX , GDC, etc.)

2) By data augmentation, oversampling and synthetic data generation (GANs, VAEs, etc.)

3) By using semi-supervised learning (augmenting labeled data with unlabeled data)

4) By Transfer learning (training predictors on related data to improve performance on given data)
5) By Multi-task learning (where several objectives are learned at once leveraging each other)

Sample size 30 100 300 1000
Confidence bounds +15% +10% +6% +3%

Table 1: Confidence bounds to be expected for a binary clas-
sification, summarizing experiments and simulations in Figure 1.
Actual confidence bounds may be significantly larger in adverse sit-
uations such as with correlated observations or very unstable classi-
fiers.
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Cell Line Expression vs. Primary Tumor
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11,081 Tumors, 2401 Cell Lines, k=200

Mix: Kidney/Ovary/Uterus

Ovary

Cs

Uterus

Mix: Sarc/Breast

Mix: Uterus/Sarc

Mix: Uterus,Breast
Testes
Breast

Mix: Pancreas/
Sarc/Other

Mix: Lung/Sarc/Other
Pancreas

Stomach Upper Digest.

Melanoma . Mix: Lung/

: Breast/Other

Leukema/Lymphoma% Bladder

Thymus

@ Adrenal Gland
@ Bladder

O Brain/Ganglia
O Breast

QO Colorectal

@ Kidney

O Leukemia/Lymphoma
O Liver/Bile Duct
Q Lung/Pleura
@ Melanoma

O Mix

Q@ Ovary

@ Pancreas

O Prostate

O Sarcoma

@ Squamous Cell
O Stomach

O Testes

O Thymus

@ Thyroid

@ Upper Digestive/Esoph
@ Uterus

eENERGY m NATIONAL CANCER INSTITUTE

Breast/Other

\

. Liver/Bile Duct
Kidney

Mix: Uterus/

Thyroid

Mix: Squamous/
Bladder

Squamous

s

Mix: Lung/
Other

Mix: Lung/Colon/other
Miydterus/other

Mix: Breast/
Colon/other

Breast

e

Brain

©0 0 @oany

Prostate

circle = primarily TCGA
square = primarily Cell Lines
cluster size = log2(samples)
N = predominantly normal
(other clusters may have a
smaller normal component)

Mix: No one type is >= 50%
of cluster (types listed in order
of prevalence



Patient Derived Xenograft Models

Patient-derived xenografts (PDX) & _
conditionally reprogrammed cell lines A > D0 5

Molecularly characterize,
[ Create reprogrammed treat/screen mice bearing
cell lines transplants & cells with
relevant drugs.

“Pre-clinical clinical trials”

Tumorigenesis

Transplantation
into NSG mice

Tumor/patient
heterogeneity

Nature Rev. Clin. Oncol. 11: 649-662, 2014.
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RNASeq Comparisons of models with Complete
Response and No Response to ABT-888 +
Temozolomide

1,300.00
120000 § ol
110000
1,000.00 -
90000
800.00
7000 { Hi]
wom | TH
ncn | |
{ EA
40000 1 i

a00.00 1

200.00

100,00

000 L—

Preclinical Trial with ABT-888 (PARP inhibitor) + Temozolomide across multiple histologies.

Several models had complete responses to the combination with no measurable tumor out to 300-d post-treatment
Collected samples at multiple time points

Performing RNASeq on 6 models as a pilot study using pre-treatment and post-dose day 5.

3 Bladder Ca models and 3 Colon Adenocarcinoma models. In both cases had a Complete Response model, No Response
model, and a model with an intermediary response.

Can differences in expression that contribute to response, or lack of response, be identified?
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Loss of Carboplatin Resistance in PDX

Patient: Metastatic Lung Adenocarcinoma.
April 2014: Carboplatin, Paclitaxel: Stable Disease
August 2014: Carboplatin, Paclitaxel: Disease Progression (scalp met resistant)

. =  Vehicle Control
March 2015: Sample for PDMR (scalp mEt) = Carboplatin + AZ1775 (Weel inhibitor)
ZBFJ2-1-X-8B [ ZBFJ2-2-X-8B I ZBF12-3-X-8B

Dosing Days
Dosing Days

Tumor Volume (mm?)
Tumor Volume (mm#)
Tumor Volume (mm?)

o
= a4 4 ¢ = m m m e & wm o  u = mowom
Study Days Study Days 5( dy n ays

'VVVM* RERER1= Y E

Passage 3 PDX Passage 6 PDX Passage 9 PDX

*PDMR preparing samples for RNASeq of baseline PDX tumor material at each passage. Are there differences in
expression that contribute to loss of sensitivity to carboplatin treatment?
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Extremely high genetic diversity in a single tumor

points to prevalence of non-Darwinian cell evolution

e U.S. DEPARTMENT OF

Fig. 22 Map of the mutation clones of HCC-15. A mutation clone is the aggregate of all sampies carrying that mutation (main text). Hence, subdones (with in-
creasingly darker hues) are nested within their parent dones. (A) Each star symbol indicates a singleton done, represented by one sample. The donal boundaries are
delineated by the genctypes of all 286 samples. Many samples straddle two clones (induding A3, B17, 819, B20, (78, D6, DS, and Z1). In this “sectoring™ pattemn of
growth, 8" grew outward from & and, subsequently, §"'s (-1, —2) grew outward from §". Note that tumors grew in three-dmensional (3D) space but the cbservations
made were on a two-dimensional (2D) plane. This was apparent in the "northeast”™ direction, along which both the a and B dlones were extending from the interior
toward the periphery. it appears that a grew above or below § in their expansion toward the periphery. (B) The § iineage dlones are pulled out to display the
overlaying pattern of mutation dones. The dional map was ako used to compute the mutation frequency spectrum, £, which 5 the number of sites where the
frequency of the mutation was between (i — 1)23 and #23 from the 286 samples. We kept the number of frequency bins at 23 because the mutations discovered
remained based on the initial 23 samples. The spectrum, asgiven nthe text, 5 [2,=26,7, 1. 1,0, 0, .. ] for i = 1-22 (Msteriak and Methods, section S and Dataset 58).
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The NCI ALMANAC: Testing All Pairwise
Combinations of Approved Cancer Drugs

 The NCI ALMANAC (A Large Matrix of AntiNeoplastic Agent
Combinations)

* Currently just over 100 small molecule oncology drugs are FDA-
approved.

* Test all possible pairwise combinations: “5000 drug pairs

* Test each drug pair in each of the cell lines in the NCI-60 panel:
— ~300,000 experiments
— ~4.3 million wells

Screen run at Frederick National Labs & 2 contract locations

Holbeck, et al., 2017
Cancer Research 77
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NCI-60 Combination Data

( = = = )

Eoriezomis + Glolabine WMGTIZENTIS =
Pacitaos! + Motk NCTIZITSG el :

worse than

either agent w m

than 1 agent
12% are Nothing
worse than active
single agents

\/ 33% are
neither better

nor worse

In addition, 92 xenograft experiments have been completed with at least 80% of
control mice reaching 1 doubling “event” for 41 drug pairs. These drug pairs all had a
good ComboScore in the corresponding cell line.

Holbeck, et al., 2017
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Drug Pair Synergy
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Problem: Modeling Drug Response

Response
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Drug Pair Response Prediction
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Deep Learning Model for Drug Pair Response

\ Predicted Percentage Growth \

?
Layer FC4
t
Layer FC3 .
5 Residual
Layer FC2 connections
f
Layer FC1
i
Concatenation layer: all encoded features
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A R N4
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Fig. 2. Neural network architecture. The orange square boxes, from bottom to top, represent input features, encoded features, and output growth values.
Feature models are denoted by round shaded boxes: green for molecular features and blue for drug features. There are multiple types of molecular features
that are fed into submodels for gene expression, proteome, and microRNA. The descriptors for the two drugs share the same descriptor model. All encoded
features are then concatenated to form input for the top fully connected layers. Most connecting layers are linked by optional residual skip connections if
their dimensions match.
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Deep Learning Model for Drug Pair Response

TABLE 1
CROSS VALIDATION RESULTS FROM FEATURE COMBINATION EXPERIMENTS
Molecular Features Drug Features MSE MAE R*

baseline baseline 0.5253 0.5709 -1.001
one-hot encoding one-hot encoding 0.2448 0.3997 0.1269
gene expression one-hot encoding 0.2447 0.3999 0.1272
gene expression 500-dimensional noise  0.2450 0.4008 0.1271
one-hot encoding Dragon7 descriptors 0.0292 0.1086 0.8892
proteome Dragon7 descriptors 0.0303 0.1117 0.8844
microRNA Dragon7 descriptors 0.0275 0.1050 0.8952
gene expression Dragon7 descriptors 0.0261 0.1014 0.9005
gene expression, microRNA, proteome  Dragon7 descriptors  0.0209 0.0956 0.9208

DNN Model explains 92% of the variance
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Progress in Deep Learning for Cancer

* AutoEncoders — learning data representations for
classificaiton and prediction of drug response,
molecular trajectories

* VAEs and GANs — generating data to support
methods development, data augmentation and
feature space algebra, drug candidate generation

 DNN/CNNs — type classification, drug response,
outcomes prediction, drug resistance

* RNNs — sequence, text and molecular trajectories
analysis

 Multi-Task Learning — terms (from text) and
feature extraction (data), data translation
(RNAseq <-> uArray)



PCA vs Deep Learning Autoencoder

Clustering Normal vs Tumor Samples
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t-sne Plot of Matched Normal Pairs Showing
Translation in Features Space
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Variational Auto Encoder
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Hybrid Models in Cancer

Genome —
/ Inform | Mechanistic biological | s T Insight
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Figure 1. Intwo DREAM challenges, high throughput data characterizing cancer cells are used to build predictive models. Mechanistic models provide
insight into the underlying biology, but do not take full advantage of the information within the data to achieve high performance. Machine learning methods
are associative and extract maximum predictive value from the data, but do not always provide insight about mechanism. The future may bring hybrid
models that combine the best of both approaches.

Predicting Cancer Drug Response: Advancing the DREAM

Russ B. Altman

Summary: The DREAM challenge is a community effort to assess current capabilities in systems biology. Two
recent challenges focus on cancer cell drug sensitivity and drug synergism, and highlight strengths and weaknesses
of current approaches. Cancer Discov; 5(3); 237-8. ©2015 AACR.

N




DOE and NIH Partnerships In
Predictive Oncology

) \“-N” U.S. DEPARTMENT OF

m NATIONAL CANCER INSTITUTE ( ENERGY




